The Coulomb force law is of the same form as the universal law of gravity → the electrostatic force is a conservative force.

Example: A small positive test charge, \(q_0 \), in a uniform electric field \(E \):

\[
W_{AB} = F \cdot s = mg(h_A - h_B)
\]

Work done by constant elec. force:

\[
W_{AB} = F \cdot s = |q_0|E \cdot s
\]

Work=Change in \(PE \):

\[
W_{AB} = -\Delta GPE = GPE_A - GPE_B
\]

\[
W_{AB} = -\Delta EPE = EPE_A - EPE_B
\]

- A positive charge gains electric potential energy when it is moved in a direction opposite the electric field.

- A negative charge loses electric potential energy when it is moved in a direction opposite the electric field.

Energy Conservation: \(W_{nc} = 0J \Rightarrow \Delta E = E_f - E_0 = 0J \)

The total energy, \(E \), of the universe does not change. Energy can only be transformed between different forms of energy but can never be destroyed or created out of nothing.

\[
E = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 + mgh + \frac{1}{2}kx^2 + EPE
\]
Electric Potential:

The potential difference between points A and B, $\Delta V = V_B - V_A$, is defined as the change in electric potential energy of a charge, q_0, moved from A to B, divided by the charge.

$$\Delta V = V_B - V_A = \frac{\Delta EPE}{q_0} = \frac{-W_{AB}}{q_0}$$ \hspace{1cm} (2)

SI Unit: Volt: $1\, V = 1\, J/C$ ($1\, eV = 1.6 \times 10^{-19}\, J$)

Note: Only potential differences can be measured, not the absolute values.

2 – Electric Potential due to a Point Charge

It is possible to define the potential of a point charge at a point in space. Reference point: Point of zero potential for a point charge: ∞

Electric potential due to a point charge, q, at a distance r from the charge:

$$V = k\frac{q}{r}$$ \hspace{1cm} (3)

- V only depends on q and r.

- The electric potential of two or more charges is obtained by applying the **superposition principle**: The total potential at a point P is the sum of the potentials due to the individual point charges present.
q > 0 → V > 0, i.e. the potential has been raised with respect to the zero reference value.
q < 0 → V < 0, i.e. the potential has decreased with respect to the zero reference value.

Electric Potential Energy of two point charges q_1 and q_2:

1. First, the charge q_1 is moved from ∞ to point A. Since there is no other charge present, no electric work is done and thus $EPE_{A1} = 0$.
2. Then, the charge q_2 is moved from ∞ to point B which is a distance r apart from A. Now electric work must be done due to the electric potential created by charge q_1: $W_{\infty B} = -q_2 V_1$ and thus $EPE_{B2} = q_2 V_1$.

\[
EPE = EPE_{A1} + EPE_{B2} = 0 + q_2 V_1 = q_1 V_2 + 0 = k \frac{q_1 q_2}{r} \quad (4)
\]

- If the two charges have the same sign, EPE is positive (like charges repel, so positive work must be done to bring the two charges near one another)
Electrical Potential Energy and Electric Potential

3 – Potentials and Charged Conductors

Relation between electric work and electric potential when a charge q_0 is moved from point A to B:

$$W_{AB} = -\Delta EPE, \quad \Delta EPE = q_0(V_B - V_A) \rightarrow$$

$$W_{AB} = -q_0(V_B - V_A) \quad (5)$$

- **No work** ($W = 0$) **is required to move a charge between two points that are at the same potential** ($V_B = V_A$)

 On a charged conductor, \mathbf{E} is perpendicular to its surface, and ZERO inside \rightarrow no work is done if a charge is moved \rightarrow

- **The electric potential is a constant everywhere on the surface of a charged conductor**

 Furthermore, it is constant everywhere inside a conductor, and equal to its value at the surface.

An area on which all points are at the same potential is called an equipotential surface.

- The electric field \mathbf{E} at every point of an equipotential surface is perpendicular to the surface.
4 – Capacitors and Dielectrics

A capacitor is a device to store electric charge (electric energy) and is used in a variety of electric circuits.

A capacitor consists of two conductors placed near to each other without touching:

Definition of capacitance:

\[C = \frac{q}{V} \]

SI unit: 1 F = 1 C/V (Farad)

5 – The Parallel Plate Capacitor

The capacitance of a device depends on the geometric arrangement of the conductors. For a parallel plate capacitor whose plates are separated by a vacuum:

\[C' = \varepsilon_0 \frac{A}{d} \]

\(\varepsilon_0 \) is the permittivity of free space: \(\varepsilon_0 = \frac{1}{4\pi k} = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2 \)

If an insulator (dielectric) is placed between the two conductors, the electric field between the conductors decreases by \((\kappa=\text{dielectric constant, see Tab.19.1})\)

\[E = \frac{E_0}{\kappa} \]

and the capacitance increases, i.e. more charge can be stored per volt.

For a parallel plate capacitor whose plates are separated by a dielectric:

\[C' = \kappa \varepsilon_0 \frac{A}{d} \]
6 – Energy stored in a Charged Capacitor

1. Start with an uncharged capacitor and move a small charge, Δq on capacitor. Voltage: $\delta V = \delta q / C$

2. As the charge accumulates and the voltage increases: to move a charge δq on capacitor which is at a voltage V, work, $\delta W = V \delta q$, needs to be done.

3. The total work done is
$$ W = \frac{1}{2} q V $$

4. The work done is stored as energy:
$$ \text{Energy stored} = \frac{1}{2} q V = \frac{1}{2} CV^2 = \frac{q^2}{2C} \quad (11) $$

Parallel plate capacitor (with $V = Ed$):
$$ \text{Energy stored} = \frac{1}{2} CV^2 = \frac{1}{2} C(Ed)^2 \quad (12) $$